Рис. 52.
8. ABCD – трапеция, ВС: AD=2:3, ВК=6, SABCD=60. Найти ВС, AD.
Рис. 53.
9. Найти SABCD.
Рис. 54. оригинальная обувь для спортакачество в спортмастере отзывы вся информация на tinkoff.ru
3. Самостоятельная работа (25 мин)
I уровень
I вариант
1. Сторона параллелограмма равна 21 см, а высота, проведенная к ней 15 см. Найдите площадь параллелограмма.
2. Сторона треугольника равна 5 см, а высота, проведенная к ней, в 2 раза больше стороны. Найдите площадь треугольника.
3. В трапеции основания равны 6 и 10 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
4. Стороны параллелограмма равны 6 и 8 см, а угол между ними равен 300. Найдите площадь параллелограмма.
5. Диагонали ромба относятся как 2:3, а их сумма равна 25 см. Найдите площадь ромба.
II вариант
1. Сторона параллелограмма равна 17 см, а его площадь 187 см2. Найдите высоту, проведенную к данной стороне.
2. Сторона треугольника равна 18 см, а высота, проведенная к ней, в 3 раза меньше стороны. Найдите площадь треугольника.
3. В трапеции основания равны 4 и 12 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
4. Стороны параллелограмма равны 4 и 7 см, а угол между ними равен 1500. Найдите площадь параллелограмма.
5. Диагонали ромба относятся как 3:5, а их сумма равна 8 см. Найдите площадь ромба.
II уровень
I вариант
1. В равнобедренном треугольнике АВС высота ВН равна 12 см, а основание АС в 3 раза больше высоты ВН. Найдите площадь треугольника АВС.
2. В параллелограмме ABCD стороны равны 14 и 8 см, высота, проведенная к большей стороне, равна 4 см. Найдите площадь параллелограмма и вторую высоту.
3. Площадь трапеции равна 320 см2, а высота трапеции равна 8 см. Найдите основания трапеции, если длина одного из оснований составляет 60 % длины другого.
4. В треугольнике АВС стороны АВ и ВС равны соответственно 14 и 18 см. Сторона АВ продолжена за точку А на отрезок АМ, равный АВ. Сторона ВС продолжена за точку С на отрезок КС, равный половине ВС. Найдите площадь треугольника МВК, если площадь треугольника АВС равна 126 см2.
5. В ромбе АВСК из вершин В и С опущены высоты ВМ и СН на прямую АК. Найдите площадь четырехугольника МВСН, если площадь ромба равна 67 см2.
II вариант
1. В равнобедренном треугольнике АВС высота АН в 4 раза меньше основания ВС, равного 16см. Найдите площадь треугольника АВС.
2. В параллелограмме ABCD высоты равны 10 и 5 см, площадь параллелограмма равна 60 см2. Найдите стороны параллелограмма.
3. В равнобокой трапеции АВСМ большее основание АМ равно 20 см,
высота ВН отсекает от АМ отрезок АН, равный 6 см. Угол ВАМ равен 450. Найдите площадь трапеции.
4. В ромбе ABCD на стороне ВС отмечена точка К такая, что КС:ВК=3:1. Найдите площадь треугольника АВК, если площадь ромба равна 48 см2.
5. В треугольнике АВМ через вершину В проведена прямая d, параллельная стороне АМ. Из вершин А и М проведены перпендикуляры АС и VD на прямую d. Найдите площадь четырехугольника ACDM, если площадь треугольника АВМ равна 23 см2.
III уровень
I вариант
1. Площадь параллелограмма равна 48 см2, а его периметр 40 см. Найдите стороны параллелограмма, если высота, проведенная к одной из них, в 3 раза меньше этой стороны.
2. В ромбе ABCD диагонали равны 5 см и 12 см. На диагонали АС взята точка М так, что АМ:МС=4:1. Найдите площадь треугольника АМD.
3. В равнобедренной трапеции высота, проведенная из вершины тупого угла, делит большее основание на два отрезка, больший из которых равен 20 см. Найдите площадь трапеции, если ее высота равна 12 см.
Материалы по педагогике:
Контрольные нормативы по технической подготовке
Контрольные нормативы дают возможность получать количественные показатели, по которым можно судить о степени владения навыками приемов игры. Приводим перечень нормативов по основным приемам. 1. Точность второй передачи. 2. Точность передачи мяча через сетку в прыжке. 3. Передачи сверху у стены, сто ...
Структура, цели и задачи кафедры
Главная цель кафедры – удовлетворение потребностей в обучении или повышении квалификации с использованием новых образовательных технологий и качественного обеспечения учебного процесса. Эффективная реализация образовательных технологий подготовки специалистов возможна лишь при создании соответствую ...
Язык логики и его место в базовом курсе
Логика – наука, изучающая методы установления истинности или ложности одних высказываний на основе истинности или ложности других высказываний. Основы логики как науки были заложены в IV в. до н.э. древнегреческим ученым Аристотелем. Правила вывода истинности высказываний, описанные Аристотелем (си ...