Рассуждения ученика: Интересующее нас множество можно записать формулой AÇC + BÇC – AÇBÇC.
Анализ ошибки: ученик множествами оперирует, как числами. Он решает совсем другую задачу: сколько элементов содержит заштрихованное множество. Задача проверяющего – разъяснить разницу между множеством и количеством элементов в этом множестве. Ошибка напрямую связана с формальным знанием определений операций над множествами. По классификации она относится к разделу неправильное понимание определения (неверная конкретизация). Поэтому в данной ситуации проверяющему рекомендуется дать кроме приведенных в методическом пособии определений на диаграммах, словесные определения:
AÈB – множество всех элементов, которые принадлежат либо A либо B.
AÇB – множество всех элементов, которые принадлежат и A и B одновременно.
A\B – множество всех элементов, принадлежащих A, но не принадлежащие множеству B.
– множество всех элементов, не принадлежащих A.
Рекомендуется также сказать, что при объединении одинаковые объекты сливаются в один. Именно из таких объектов, которые содержатся в обоих множествах, и состоит пересечение. Пусть ученик сравнит определения с их графическими иллюстрациями. Сначала лучше научиться строить множества по формулам (их достаточно в пособии), а потом переходить к написанию формул по диаграммам.
Задача 2-6. Сколько существует семизначных чисел, цифры которых идут в убывающем порядке?
Рассуждения ученика: всё решение сводится к указанию того факта, что семизначных чисел столько же, сколько трехзначных с соответствующим убывающим порядком цифр. Отсутствует доказательство этого факта.
Анализ ошибки: Стоит упомянуть то, что перед данной задачей разобрана следующая : сколько существует восьмизначных чисел, цифры которых идут в убывающем порядке? Подробно рассмотрено решение, суть которого состоит в установлении взаимнооднозначного соответствия между восьмизначными и двузначными числами. Количество двузначных чисел нам уже известно. Авторы хотели тем самым дать образец решения. Хорошо выделили этапы доказательства: каждому двузначному сопоставлено ровно одно восьмизначное; каждому восьмизначному сопоставлено ровно одно двузначное; установлено взаимноооднозначное соответствие, следовательно, и тех и других чисел одинаковое число. Предполагалось, что школьники будут действовать аналогично. Действительно, многие ученики привели полностью обоснованное решение, но есть и те, кто не написал его, посчитав излишним приводить обоснования, аналогичные изложенным в методическом пособии. Необязательно требовать от ученика полностью приводить все доказательство, но в чем отличие рассуждений с семизначными числами от рассуждений с восьмизначными и почему действия будут аналогичными – ученик должен написать. Иначе это – необоснованная аналогия и решением не является. Одного ответа в данной задаче недостаточно, ученик должен понимать суть подсчета и уметь его осуществлять в подобных ситуациях. Ссылаться на соответствующий результат можно лишь после того, как показано, что решение при этом будет действительно аналогичное. Для убедительности надо привести задачу, в которой действия по аналогии приводят к неверному ответу. Можно привести задачу на поиск количества девяток в числах от 1 до 100. Рассуждаем следующим образом. От 1 до 10 – одна девятка, от 11 до 20 также – одна, получается в каждом десятке по одной девятке. Так как десятков десять, то девятка в числах от 1 до 100 встречается 10 раз. Все вроде бы верно, за исключением того, что в каждом числе от 90 до 99 включительно девятка встречается еще и в разряде десятков (в других десятках она встречается лишь в разряде единиц), поэтому аналогия на этот десяток неверная. В результате вместо верного результата 20 мы получили всего лишь 10.
На таких, очевидных с виду задачах, подобных задаче 2-6, и нужно развивать умение строго обосновывать каждый шаг в рассуждениях.
Задача 3-5. б) Четыре футбольных команды A, B, C и D, провели друг с другом несколько тренировочных матчей. Известно, что команда A участвовала в 6 матчах, команда B – в 5, C – в 7, D – в 10. Сколько всего состоялось матчей?
в) Три футбольных команды, A, B и C провели друг с другом несколько тренировочных матчей. Известно, что команда A участвовала в 6 матчах, команда B – в 7 матчах, а команда C – в 11 матчах. Сколько матчей сыграли друг с другом команды A и C?
Материалы по педагогике:
Определение слова, его значение и признаки слова
В современной научной литературе слово рассматривается как знак, обозначающий результат познания, мышления. Слово является основной единицей языка. Было предложено несколько сотен определений этой единицы, мы рассмотрим только некоторые из них. Д.Н. Шмелев считает, что слово - это такая единица язы ...
Понятие социально-педагогической
поддержки
Понятие "поддержка" введено в педагогику относительно недавно О.С. Газманом и получило развитие в работах А.Т. Анохина, А.Г. Асмолова, А.Ф. Березина, Н.А. Галагузовой, И.Ф. Дементьевой, И.В. Дубровиной, И.Б. Котовой, А.Г. Лидерс, Л.Я. Олиференко, Л.А. Петровской, Е.Н. Шиянова, Т.И. Шульги ...
Специфика мотивации обучения в подростковом возрасте
Прежде чем обсуждать, пути развития мотивации учебной деятельности учащихся средних классов, необходимо определить, чем психологически отличается этот возраст от младшего школьного возраста, от юношеского возраста и от взрослых людей. От младшего школьного возраста подростковый (12 - 14 лет) отлича ...