Для того чтобы параллелограмм был ромбом, достаточно ли, чтобы одна из его диагоналей служила биссектрисой одного из его углов? А в случае четырехугольника?
Внутри, какого параллелограмма существует точка, равноотстоящая: 1) от всех его вершин, 2) от всех его сторон?
Построить параллелограмм по высоте и диагонали. Сколько решений имеет задача?
Построить прямоугольник по диагонали и сумме двух других сторон.
Построить параллелограмм по двум сторонам и высоте.
Построить квадрат по диагонали.
Тематическое повторение непременно должно предшествовать заключительному повторению в конце четверти или учебного года. Без выполнения этого этапа повторения невозможно успешное осуществление заключительного повторения.
Повторение, проводимое на завершающем этапе изучения основных вопросов курса математики и осуществляемое в логической связи с изучением учебного материала по данному разделу или курсу в целом, мы будем называть заключительным повторением.
Цели тематического повторения и заключительного повторения аналогичны, материал повторения (отбор существенного) весьма близок, а приемы повторения в ряде случаев совпадают.
Заключительное повторение в конце учебного года проводится также по темам, однако здесь из темы берется наиболее существенное, материал темы более суживается. Если при тематическом повторении сравнение проводится в рамках этой темы, то при заключительном повторении сравнение математических явлений проводится на более широком материале, и путем такого сравнения учащимся показывается связь между разделами курса.
Такое повторение способствует большему осознанию пройденного, указывает на связь различных разделов курса и одновременно дает возможность обозреть большой материал, создавая представление о системе математики.
Заключительное повторение должно помочь учащимся обобщить известные им знания, обозреть полученные знания в определенной идейно направленной системе, выявить внутренние логические связи между соответствующими отделами предмета, прочно закрепить пройденное.
Таким образом, заключительное повторение учебного материала преследует цели:
Обозрения основных понятий, ведущих идей курса соответствующего учебного предмета; напоминания в возможно крупных чертах пройденного пути, эволюции понятий, их развития, их теоретических и практических приложений.
Углубления и по возможности расширения знаний учащихся по основным вопросам курса в процессе повторения.
Некоторой перестройки и иного подхода к ранее изученному материалу, присоединения к изученному материалу предшествующих лет обучения новых знаний допускаемых программой, с целью его углубления.
Уроки по заключительному повторению, как и любой другой урок, должны быть весьма тщательно продуманы как с точки зрения содержания, так и организации их. При этом они могут быть проведены по плану, не совпадающему с планом первоначального изучения. На уроках заключительного повторения должны широко использоваться сопоставления, сравнения и аналогии; постановка самих вопросов по своему характеру должна заставлять несколько по-иному осмысливать прежний материал.
Рассматривая вопросы организации повторения, нельзя увлекаться внесением новизны. Элементы новизны, вносимые при заключительном повторении, не должны наслаивать на основной материал новые, еще не осознанные факты, в равной мере это замечание относится к чрезмерному разнообразию уроков повторения; повторение нельзя отрывать от тех методов, которыми учитель пользовался на обычных уроках.
Примером такого вида повторения может служить заключительное повторение курса планиметрии. Это повторение преследует цель систематизировать и обобщить ранее изученные свойства плоских фигур.
Систематизацию знаний и умений, учащихся удобно построить в три этапа.
На первом этапе рассматривается учебный материал, отражающий свойства одной из основных фигур планиметрии — треугольника: повторяются теоремы о свойствах и признаках различных треугольников, в результате чего систематизируются умения учащихся проводить доказательные рассуждения.
На втором этапе повторения учебный материал группируется вокруг многоугольников. Особенностью второго этапа является отработка умений учащихся проводить поиск логических закономерностей и обоснований свойств геометрических фигур на более сложных, по сравнению с первым этапом, геометрических конфигурациях. Кроме того, здесь неизбежно еще раз повторяются свойства треугольников.
На третьем этапе повторяются свойства окружности (круга) и ее элементов. Этот этап подводит итог изучения курса планиметрии.
Содержание повторения
Первый этап
Определение треугольника и его элементов.
Понятие о равных треугольниках.
Признаки равенства треугольников. Признаки равенства прямоугольных треугольников.
Свойство углов при основании равнобедренного треугольника. Признак равнобедренного треугольника. Свойство медианы равнобедренного треугольника, проведенной к основанию.
Материалы по педагогике:
Методологические особенности проектной деятельности детской школы искусств
Социокультурное проектирование - это специфическая технология, способ достижения определённого результата. Это конструктивная, творческая деятельность, сущность которой заключается в анализе проблем и выявлении причин их возникновения, выработке целей и задач, характеризующих желаемое состояние объ ...
Создание системы воспитательной работы с учащейся молодежью
В лицее накоплен богатый опыт по воспитанию студентов и учащихся в процессе учебной и внеучебной деятельности. Однако в современных условиях требования, предъявляемые к выпускникам, претерпевают значительные изменения. Кроме высокого профессионального уровня, выпускнику лицея необходимо обладать мн ...
Духовный кризис общества и семья
Семья и брак - основа общества и поэтому любому, кто хочет понять и осознать проблемы общества, необходимо понимать и то, что происходит в этой области и каковы причины кризиса семьи. Советский Союз - единственная страна в мире, где люди жили при социализме более 70 лет, то есть за это время полнос ...