Задача на пропорциональное деление включает три величины, связанные пропорциональной зависимостью, из них две переменные и одна или больше постоянных, причем даны два или более значений одной переменной и сумма соответствующих значений другой переменной, слагаемые этой суммы являются искомыми.
Классификация задач на пропорциональное деление. Применительно к каждой группе величин, связанных пропорциональной зависимостью, можно выделить 6 видов задач на пропорциональное деление, четыре из которых с прямо пропорциональной зависимостью, а две с обратно пропорциональной зависимостью.
Способ решения – арифметический (нахождение значения постоянной величины через вычисление отношения заданной суммы величин к сумме двух данных величин, а затем вычисление значений каждой искомой величины) и алгебраический (уравнением).
Для решения задачи удобно записывать данные условия в виде таблицы. В общем виде таблицы всех шести видов задач представлены в Приложении 6.
Следует обратить особое внимание на особенности работы с ознакомлением данного вида задач поэтапно.
Подготовкой к решению задач на пропорциональное деление является твердое умение школьников решать задачи на нахождение четвертого пропорционального.
При ознакомлении с задачами на пропорциональное деление следует получить задачи этого вида путем совместной с учащимися работы по преобразованию задач на нахождение четвертого пропорционального в задачи нового вида Таким образом, необходимо отметить важность наличия у детей сформированного умения составлять и преобразовывать задачи.
В начале рассматривают преимущественно задачи на пропорциональное деление первого вида с такими группами величин: цена, количество, стоимость; масса одного предмета, число предметов, общая масса; емкость одного сосуда, число сосудов, общая емкость и др. После этого вводятся задачи второго вида, а несколько позднее третьего и четвертого видов. Следует отметить, что в начальной школе в основном решаются задачи с прямо пропорциональной зависимостью величин.
Материалы по педагогике:
Теоретическое
обоснование понятия динамического баланса в педагогике
Целесообразность стремления системы к равновесию, при противоречивых статических и динамических составляющих, можно описать, используя понятие динамического баланса (тем самым приближаясь к позициям динамико-статистического, или системно–комплексного подхода). Для разъяснения вводимого понятия и со ...
Классификация исполнителей
Хотя алгоритмические исполнители используются повсеместно в школьной практике, однако до сих пор нет стройной классификации по этой теме. В своих методических статьях и выступлениях А. П. Ершов выдвигал следующую идею применительно к школьной информатике: различать исполнителей алгоритмов, работающ ...
Методики правового обучения в практике работы школ
Большую роль в правовом образовании играют дискуссионные методы. Целесообразно их использовать при обучении праву в старших классах. Дискуссия позволяет развивать самостоятельность школьников, которые высказывают свою точку зрения на проблему. Для проведения дискуссии необходимо сформулировать опре ...