Нейросети представляют собой математическую структуру, имитирующую некоторые аспекты работы человеческого мозга и демонстрирующие такие его возможности, как способность к неформальному обучению, способность к обобщению и кластеризации неклассифицированной информации, способность самостоятельно строить прогнозы на основе уже предъявленных временных рядов. Главным их отличием от других методов, например таких, как экспертные системы, является то, что нейросети в принципе не нуждаются в заранее известной модели, а строят ее сами только на основе предъявляемой информации. Именно поэтому нейронные сети и генетические алгоритмы вошли в практику всюду, где нужно решать задачи прогнозирования, классификации, управления — иными словами, в области человеческой деятельности, где есть плохо алгоритмизуемые задачи, для решения которых необходимы либо постоянная работа группы квалифицированных экспертов, либо адаптивные системы автоматизации, каковыми и являются нейронные сети.
Нейронная сеть обучается решению задачи на основании некоторой обучающей выборки – «задачника», состоящего из набора пар «вход–требуемый выход», и далее способна решать примеры, не входящие в обучающую выборку, другими словами нейронная сеть сама становится экспертом.
Таблица 1.4 – Преимущества и недостатки применения нейронных сетей для решения задач оценки и прогнозирования
Достоинства метода |
Недостатки метода |
1 Возможность использования опыта. 2 Возможность обработки и запоминания эмпирических данных о деятельности объекта. 3 Возможность оперативного дообучения. 4 Возможность определения значимости входных показателей. 5 Возможность работы с зашумленными и неполными данными. |
1 Логическая непрозрачность получаемых результатов. 2 Получаемые результаты заведомо содержат ошибку. |
В экономике и бизнесе методы искусственного интеллекта применяется для предсказания рынков, автоматического дилинга, оценки рисков невозврата кредитов, предсказания банкротств, оценки стоимости недвижимости, оптимизации портфелей, товарных и денежных потоков. В дипломном проекте мной рассмотрено применение нейронных сетей в рейтинговой оценке качества деятельности преподавателей кафедры «Информационные системы в экономике» Алтайского государственного технического университета им. И.И. Ползунова.
Выводы:
- подробно рассмотрены роль и деятельность кафедры;
- смоделированы внутренние и внешние процессы;
- определены квалификационные требования преподавателей и проанализированы критерии их деятельности;
- изучен отечественный и зарубежный опыт оценки квалификации ППС;
- рассмотрен обзор существующих методик по рейтингу преподавателей вузов.
Материалы по педагогике:
Проект по развитию умения обобщать младших школьников при изучении
математики
Цель проекта: в соответствии с гипотезой и теоретическими выводами, сделанными в 1 главе, а также результатами констатирующего эксперимента, отраженного во 2 главе, составить проект на основе алгебраического материала ИУМК «Школа 2000» Петерсон 3 класс, результатом которой будет сформированность ум ...
Абстракция,
конкретизация и обобщение
Абстракция состоит в том, что субъект, вычленяя какие-либо свойства, признаки изучаемого объекта, отвлекается от остальных. Абстрагирование, процесс применения абстракции, обычно осуществляется в результате анализа. При этом признак, отделяемый от объекта, становится самостоятельным объектом мышлен ...
Предупреждение депривации в образовательном процессе
По результатам современных, педагогических исследований установлено, что в любом образовательном учреждении, с любим составом учащихся, в процессе обучения есть факторы, которые приводят к депривации. Однако в процессе явления депривации во взаимодействии с педагогом, все участники взаимодействия к ...