Нейросети представляют собой математическую структуру, имитирующую некоторые аспекты работы человеческого мозга и демонстрирующие такие его возможности, как способность к неформальному обучению, способность к обобщению и кластеризации неклассифицированной информации, способность самостоятельно строить прогнозы на основе уже предъявленных временных рядов. Главным их отличием от других методов, например таких, как экспертные системы, является то, что нейросети в принципе не нуждаются в заранее известной модели, а строят ее сами только на основе предъявляемой информации. Именно поэтому нейронные сети и генетические алгоритмы вошли в практику всюду, где нужно решать задачи прогнозирования, классификации, управления — иными словами, в области человеческой деятельности, где есть плохо алгоритмизуемые задачи, для решения которых необходимы либо постоянная работа группы квалифицированных экспертов, либо адаптивные системы автоматизации, каковыми и являются нейронные сети.
Нейронная сеть обучается решению задачи на основании некоторой обучающей выборки – «задачника», состоящего из набора пар «вход–требуемый выход», и далее способна решать примеры, не входящие в обучающую выборку, другими словами нейронная сеть сама становится экспертом.
Таблица 1.4 – Преимущества и недостатки применения нейронных сетей для решения задач оценки и прогнозирования
|
Достоинства метода |
Недостатки метода |
|
1 Возможность использования опыта. 2 Возможность обработки и запоминания эмпирических данных о деятельности объекта. 3 Возможность оперативного дообучения. 4 Возможность определения значимости входных показателей. 5 Возможность работы с зашумленными и неполными данными. |
1 Логическая непрозрачность получаемых результатов. 2 Получаемые результаты заведомо содержат ошибку. |
В экономике и бизнесе методы искусственного интеллекта применяется для предсказания рынков, автоматического дилинга, оценки рисков невозврата кредитов, предсказания банкротств, оценки стоимости недвижимости, оптимизации портфелей, товарных и денежных потоков. В дипломном проекте мной рассмотрено применение нейронных сетей в рейтинговой оценке качества деятельности преподавателей кафедры «Информационные системы в экономике» Алтайского государственного технического университета им. И.И. Ползунова.
Выводы:
- подробно рассмотрены роль и деятельность кафедры;
- смоделированы внутренние и внешние процессы;
- определены квалификационные требования преподавателей и проанализированы критерии их деятельности;
- изучен отечественный и зарубежный опыт оценки квалификации ППС;
- рассмотрен обзор существующих методик по рейтингу преподавателей вузов.
Материалы по педагогике:
Финансирование по уровням образования
Финансовое состояние начальной школы считается вполне благополучным. Во-первых, система финансирования на этом уровне образования давно отлажена. Во-вторых, начальная школа является не столь капиталоемким сектором, как средняя и тем более высшая школа – крупные расходы (в 2002 г. – 29,7 млрд. евро ...
Экономические аспекты создания и использования ЭУМК
Существуют три основных подхода к созданию электронных образовательных ресурсов, назовем их условно медийный, игровой и издательский. Медийный подход предполагает организацию работ по созданию ресурса по типу производства медийной продукции: кинофильмов и телепрограмм. Главным лицом в таком процесс ...
Планирование учебного процесса по физической
культуре
Успех учебного процесса по физической культуре во многом зависит от того, насколько продуманно составлено и как выполняется перспективное планирование учебной работы в целом и на конкретных уроках в частности. В основе перспективного планирования лежат документы, которые должны быть у каждого учите ...